Unitary Foundation is excited to be sharing the results for the 2025 Quantum Open Source Survey!
This annual survey is a chance for everyone in quantum technology to share their voice and help create an informative and representative snapshot of the community and field.
The more we understand about the needs and backgrounds of the quantum computing community, the more we can ensure the field's products/services/events accommodate their users.
You can read more about the results in this blog post .
With 1,400+ respondents from around the world, this survey provides a dataset that is both inclusive and representative of current and prospective quantum open-source software (OSS) developers and users, and provides trends from the past 3 years of survey data.
Our results are divided into the following sections:
Demographics
1) Roles
Which of the following statements describe your role? Please check all that apply.
h_barchart (
data. replies_clean [0 ],
{ x : (d) => d. all_ratio ,
y : (d) => d. short_label ,
width : width,
questionN : 1 ,
showTotal : true ,
nAnswers : [
data. n_replies [0 ]. all [0 ],
],
}
)
2) Background
Which of the following statements best describe your background?
Total answers: 1134 (2025) – 807 (2024) – 633 (2023)
Compare with 2024
Compare with 2023
yearsData2024_2 = [
{
"short_label" : "Quantum research" ,
"value" : 56.4
},
{
"short_label" : "Classical programming and software technologies" ,
"value" : 52.3
},
{
"short_label" : "Quantum programming and software technologies" ,
"value" : 40.4
},
{
"short_label" : "Non-quantum research" ,
"value" : 17
},
{
"short_label" : "Others" ,
"value" : 4.8
}
];
dataWith2024_2 = data. replies_clean [1 ]. slice (0 , data. replies_clean [1 ]. length ). map ((e, index) => {
const d = yearsData2024_2. find ((d) => d. short_label == e. short_label );
e['data2024' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [1 ]. slice (0 , data. replies_clean [1 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2024 ,
y : (d) => d. short_label ,
width : width,
questionN : 2 ,
max : 60 ,
nAnswers : [data. n_replies [1 ]. all [0 ], '807' ],
compareWith : '2024' ,
shownAnswers : false
}
)
yearsData2023_2 = [
{
"short_label" : "Quantum research" ,
"value" : 55.5
},
{
"short_label" : "Classical programming and software technologies" ,
"value" : 56.1
},
{
"short_label" : "Quantum programming and software technologies" ,
"value" : 40.1
},
{
"short_label" : "Non-quantum research" ,
"value" : 14.1
},
{
"short_label" : "Others" ,
"value" : 6.3
}
];
dataWith2023_2 = data. replies_clean [1 ]. slice (0 , data. replies_clean [1 ]. length ). map ((e, index) => {
const d = yearsData2023_2. find ((d) => d. short_label == e. short_label );
e['data2023' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [1 ]. slice (0 , data. replies_clean [1 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2023 ,
y : (d) => d. short_label ,
width : width,
questionN : 2 ,
max : 60 ,
nAnswers : [data. n_replies [1 ]. all [0 ], '633' ],
compareWith : '2023' ,
shownAnswers : false
}
)
2b) Combination of role and background
heatmap (
roles_background,
{
xName : "background" ,
yName : "role" ,
fillName : "n" ,
width : width
}
)
3) Main reason for involvement in quantum technologies
Which of the following statements best describe your main reason for your involvement in quantum technologies?
h_barchart (
data. replies_clean [2 ],
{ x : (d) => d. all_ratio ,
y : (d) => d. short_label ,
width : width,
questionN : 3 ,
showTotal : true ,
nAnswers : [
data. n_replies [2 ]. all [0 ],
],
}
)
4) Affiliation in quantum technology
Which of the following options represent the type of organization(s) you are affiliated with? Please check all that apply.
h_barchart (
data. replies_clean [3 ],
{ x : (d) => d. all_ratio ,
y : (d) => d. short_label ,
width : width,
questionN : 4 ,
showTotal : true ,
nAnswers : [
data. n_replies [3 ]. all [0 ],
],
}
)
5) Affiliated organization size in terms of employee number
Approximately how many people are employed by the organization you are currently affiliated with?
h_barchart (
data. replies_clean [4 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [4 ]. all [0 ],
data. n_replies [4 ]. researcher [0 ],
data. n_replies [4 ]. software_developer [0 ],
data. n_replies [4 ]. student [0 ],
data. n_replies [4 ]. other_role [0 ],
data. n_replies [4 ]. academic_institution [0 ],
data. n_replies [4 ]. enterprise_organization [0 ],
data. n_replies [4 ]. startup [0 ],
data. n_replies [4 ]. other_affiliation [0 ]
],
width : width,
questionN : 5
}
)
6) Pay for working with quantum technology
Do you get paid for working with Quantum Technology?
h_barchart (
data. replies_clean [5 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [5 ]. all [0 ],
data. n_replies [5 ]. researcher [0 ],
data. n_replies [5 ]. software_developer [0 ],
data. n_replies [5 ]. student [0 ],
data. n_replies [5 ]. other_role [0 ],
data. n_replies [5 ]. academic_institution [0 ],
data. n_replies [5 ]. enterprise_organization [0 ],
data. n_replies [5 ]. startup [0 ],
data. n_replies [5 ]. other_affiliation [0 ]
],
width : width,
questionN : 6
}
)
7) Length of stay within the same company
If yes, on average, how long did you stay with previous employers before changing companies?
h_barchart (
data. replies_clean [6 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [6 ]. all [0 ],
data. n_replies [6 ]. researcher [0 ],
data. n_replies [6 ]. software_developer [0 ],
data. n_replies [6 ]. student [0 ],
data. n_replies [6 ]. other_role [0 ],
data. n_replies [6 ]. academic_institution [0 ],
data. n_replies [6 ]. enterprise_organization [0 ],
data. n_replies [6 ]. startup [0 ],
data. n_replies [6 ]. other_affiliation [0 ]
],
width : width,
questionN : 7
}
)
8) Work environment in quantum technology
If you work in quantum technology, how do you work?
h_barchart (
data. replies_clean [7 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [7 ]. all [0 ],
data. n_replies [7 ]. researcher [0 ],
data. n_replies [7 ]. software_developer [0 ],
data. n_replies [7 ]. student [0 ],
data. n_replies [7 ]. other_role [0 ],
data. n_replies [7 ]. academic_institution [0 ],
data. n_replies [7 ]. enterprise_organization [0 ],
data. n_replies [7 ]. startup [0 ],
data. n_replies [7 ]. other_affiliation [0 ]
],
width : width,
questionN : 8
}
)
9) Country of residence
In what country do you currently live?
Top 10
Show all
length_10 = data. replies_clean [8 ]. length
h_barchart (
data. replies_clean [8 ]. slice (length_10 - 10 , length_10),
{
x : (d) => d. all_ratio ,
y : (d) => d. short_label ,
filters : false ,
width : width,
questionN : 9 ,
nAnswers : []
}
)
h_barchart (
data. replies_clean [8 ]. filter (d =>
d. all_ratio > 0 ),
{
x : (d) => d. all_ratio ,
y : (d) => d. short_label ,
filters : false ,
width : width,
questionN : 9 ,
nAnswers : []
}
)
10) Age
What is your age?
h_barchart (
data. replies_clean [9 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [9 ]. all [0 ],
data. n_replies [9 ]. researcher [0 ],
data. n_replies [9 ]. software_developer [0 ],
data. n_replies [9 ]. student [0 ],
data. n_replies [9 ]. other_role [0 ],
data. n_replies [9 ]. academic_institution [0 ],
data. n_replies [9 ]. enterprise_organization [0 ],
data. n_replies [9 ]. startup [0 ],
data. n_replies [9 ]. other_affiliation [0 ]
],
width : width,
questionN : 10
}
)
11) Educational background
What is your educational background?
h_barchart (
data. replies_clean [10 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [10 ]. all [0 ],
data. n_replies [10 ]. researcher [0 ],
data. n_replies [10 ]. software_developer [0 ],
data. n_replies [10 ]. student [0 ],
data. n_replies [10 ]. other_role [0 ],
data. n_replies [10 ]. academic_institution [0 ],
data. n_replies [10 ]. enterprise_organization [0 ],
data. n_replies [10 ]. startup [0 ],
data. n_replies [10 ]. other_affiliation [0 ]
],
width : width,
questionN : 11
}
)
12) Ethnicity
What race or ethnicity best describes you?
Total answers: 1097 (2025) – 787 (2024) – 604 (2023) – 172 (2022)
Compare with 2024
Compare with 2023
Compare with 2022
yearsData2024_12 = [
{
"short_label" : "White or of European descent" ,
"value" : 41.7
},
{
"short_label" : "South Asian" ,
"value" : 18.8
},
{
"short_label" : "Hispanic or Latino" ,
"value" : 9.9
},
{
"short_label" : "East Asian" ,
"value" : 10
},
{
"short_label" : "Black or of African descent" ,
"value" : 5.2
},
{
"short_label" : "Middle Eastern" ,
"value" : 3.2
},
{
"short_label" : "Biracial/Multiracial" ,
"value" : 2.5
},
{
"short_label" : "Other" ,
"value" : 2.2
},
{
"short_label" : "Prefer Not to Share" ,
"value" : 8.5
}
];
dataWith2024_12 = data. replies_clean [11 ]. slice (0 , data. replies_clean [11 ]. length ). map ((e, index) => {
const d = yearsData2024_12. find ((d) => d. short_label == e. short_label );
e['data2024' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [11 ]. slice (0 , data. replies_clean [11 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2024 ,
y : (d) => d. short_label ,
width : width,
questionN : 12 ,
max : 50 ,
nAnswers : [data. n_replies [11 ]. all [0 ], '787' ],
compareWith : '2024' ,
shownAnswers : false
}
)
yearsData2023_12 = [
{
"short_label" : "White or of European descent" ,
"value" : 44.4
},
{
"short_label" : "South Asian" ,
"value" : 18
},
{
"short_label" : "Hispanic or Latino" ,
"value" : 9.4
},
{
"short_label" : "East Asian" ,
"value" : 6.8
},
{
"short_label" : "Black or of African descent" ,
"value" : 4
},
{
"short_label" : "Middle Eastern" ,
"value" : 2.6
},
{
"short_label" : "Biracial/Multiracial" ,
"value" : 2
},
{
"short_label" : "Other" ,
"value" : 2.6
},
{
"short_label" : "Prefer Not to Share" ,
"value" : 10.1
}
];
dataWith2023_12 = data. replies_clean [11 ]. slice (0 , data. replies_clean [11 ]. length ). map ((e, index) => {
const d = yearsData2023_12. find ((d) => d. short_label == e. short_label );
e['data2023' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [11 ]. slice (0 , data. replies_clean [11 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2023 ,
y : (d) => d. short_label ,
width : width,
questionN : 12 ,
max : 50 ,
nAnswers : [data. n_replies [11 ]. all [0 ], '604' ],
compareWith : '2023' ,
shownAnswers : false
}
)
yearsData2022_12 = [
{
"short_label" : "White or of European descent" ,
"value" : 52
},
{
"short_label" : "South Asian" ,
"value" : 12
},
{
"short_label" : "Hispanic or Latino" ,
"value" : 8
},
{
"short_label" : "East Asian" ,
"value" : 4
},
{
"short_label" : "Black or of African descent" ,
"value" : 6
},
{
"short_label" : "Middle Eastern" ,
"value" : 3
},
{
"short_label" : "Biracial/Multiracial" ,
"value" : 4
},
{
"short_label" : "Other" ,
"value" : 2
},
{
"short_label" : "Prefer Not to Share" ,
"value" : 4
}
];
dataWith2022_12 = data. replies_clean [11 ]. slice (0 , data. replies_clean [11 ]. length ). map ((e, index) => {
const d = yearsData2022_12. find ((d) => d. short_label == e. short_label );
e['data2022' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [11 ]. slice (0 , data. replies_clean [11 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2022 ,
y : (d) => d. short_label ,
width : width,
questionN : 12 ,
max : 50 ,
nAnswers : [data. n_replies [11 ]. all [0 ], '172' ],
compareWith : '2022' ,
shownAnswers : false
}
)
13) Gender identity
What is your gender identity?
Total answers: 1118 (2025) – 796 (2024) – 618 (2023) – 172 (2022)
Compare with 2024
Compare with 2023
Compare with 2022
yearsData2024_13 = [
{
"short_label" : "Man" ,
"value" : 78.4
},
{
"short_label" : "Woman" ,
"value" : 12.6
},
{
"short_label" : "Prefer Not to Share" ,
"value" : 6
},
{
"short_label" : "Non-binary, genderqueer or gender non-conforming" ,
"value" : 2.8
}
];
dataWith2024_13 = data. replies_clean [12 ]. slice (0 , data. replies_clean [12 ]. length ). map ((e, index) => {
const d = yearsData2024_13. find ((d) => d. short_label == e. short_label );
e['data2024' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [12 ]. slice (0 , data. replies_clean [12 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2024 ,
y : (d) => d. short_label ,
width : width,
questionN : 13 ,
max : 80 ,
nAnswers : [data. n_replies [12 ]. all [0 ], '796' ],
compareWith : '2024' ,
shownAnswers : false
}
)
yearsData2023_13 = [
{
"short_label" : "Man" ,
"value" : 76.2
},
{
"short_label" : "Woman" ,
"value" : 15.4
},
{
"short_label" : "Prefer Not to Share" ,
"value" : 6
},
{
"short_label" : "Non-binary, genderqueer or gender non-conforming" ,
"value" : 1.6
}
];
dataWith2023_13 = data. replies_clean [12 ]. slice (0 , data. replies_clean [12 ]. length ). map ((e, index) => {
const d = yearsData2023_13. find ((d) => d. short_label == e. short_label );
e['data2023' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [12 ]. slice (0 , data. replies_clean [12 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2023 ,
y : (d) => d. short_label ,
width : width,
questionN : 13 ,
max : 80 ,
nAnswers : [data. n_replies [12 ]. all [0 ], '618' ],
compareWith : '2023' ,
shownAnswers : false
}
)
yearsData2022_13 = [
{
"short_label" : "Man" ,
"value" : 73
},
{
"short_label" : "Woman" ,
"value" : 19
},
{
"short_label" : "Prefer Not to Share" ,
"value" : 4
},
{
"short_label" : "Non-binary, genderqueer or gender non-conforming" ,
"value" : 3
}
];
dataWith2022_13 = data. replies_clean [12 ]. slice (0 , data. replies_clean [12 ]. length ). map ((e, index) => {
const d = yearsData2022_13. find ((d) => d. short_label == e. short_label );
e['data2022' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [12 ]. slice (0 , data. replies_clean [12 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2022 ,
y : (d) => d. short_label ,
width : width,
questionN : 13 ,
max : 80 ,
nAnswers : [data. n_replies [12 ]. all [0 ], '172' ],
compareWith : '2022' ,
shownAnswers : false
}
)
14) Years of professional experience
How many years of professional quantum experience do you have?
h_barchart (
data. replies_clean [13 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [13 ]. all [0 ],
data. n_replies [13 ]. researcher [0 ],
data. n_replies [13 ]. software_developer [0 ],
data. n_replies [13 ]. student [0 ],
data. n_replies [13 ]. other_role [0 ],
data. n_replies [13 ]. academic_institution [0 ],
data. n_replies [13 ]. enterprise_organization [0 ],
data. n_replies [13 ]. startup [0 ],
data. n_replies [13 ]. other_affiliation [0 ]
],
width : width,
questionN : 14
}
)
Experience
15) Quantum software use
Have you ever used any Quantum Software? Quantum Software is any tool that assists with connecting to quantum computing cloud services or research in the fields of quantum computing or quantum physics, as well as study, teach, learn, develop, simulate, or interact with quantum computing concepts.
h_barchart (
data. replies_clean [14 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [14 ]. all [0 ],
data. n_replies [14 ]. researcher [0 ],
data. n_replies [14 ]. software_developer [0 ],
data. n_replies [14 ]. student [0 ],
data. n_replies [14 ]. other_role [0 ],
data. n_replies [14 ]. academic_institution [0 ],
data. n_replies [14 ]. enterprise_organization [0 ],
data. n_replies [14 ]. startup [0 ],
data. n_replies [14 ]. other_affiliation [0 ]
],
width : width,
questionN : 15
}
)
16) Primary Role in Quantum Software
When it comes to the Quantum Software project you are most involved in, what best describes your role during the last year?
h_barchart (
data. replies_clean [15 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [15 ]. all [0 ],
data. n_replies [15 ]. researcher [0 ],
data. n_replies [15 ]. software_developer [0 ],
data. n_replies [15 ]. student [0 ],
data. n_replies [15 ]. other_role [0 ],
data. n_replies [15 ]. academic_institution [0 ],
data. n_replies [15 ]. enterprise_organization [0 ],
data. n_replies [15 ]. startup [0 ],
data. n_replies [15 ]. other_affiliation [0 ]
],
width : width,
questionN : 16
}
)
Full-stack development platforms, compilers, and simulators
A full-stack development platform is a Software Development Kit (SDK) or framework to design quantum algorithms (including quantum circuits) and run them on real or simulated back-ends. A compiler is a tool that translates high-level quantum programming languages into lower-level instructions that can be executed by quantum hardware. A simulator is a quantum circuit simulator that emulates computations as were run on a quantum process unit (QPU).
Cloud Services
A Cloud Service allows access to quantum processors or simulators via a remote API. Examples are the IBM Quantum, Rigetti Cloud Services, AWS Braket, etc.
18) Cloud services used currently or in the future
Please select which of the following cloud services for quantum software you are currently using and which services you would like to use in the next year? Please select all that apply.
Top 5
Show all
array18 = data. replies_clean [17 ]. map ((r) =>
mult_barchart (
r. data ,
{
x : (d) => d. all_ratio ,
y : (d) => d. short_label ,
z : r. tool ,
width : width,
questionN : 18 ,
max : 70 // give the same scale to all charts
}
))
// solo i primi 5
array18[0 ]
IBM Quantum Platform
65.5
36.0
Classiq
21.8
20.3
Amazon Braket
16.4
22.7
Microsoft Azure Quantum
11.5
17.6
qBraid
16.8
11.5
IonQ Quantum Cloud
8.1
14.4
Quantinuum Nexus
7.5
14.4
Xanadu Cloud
6.0
14.9
DWave Leap
7.4
11.4
Rigetti Quantum Cloud Services
4.0
11.3
BlueQubit
4.2
8.3
Pasqal Cloud Services
3.2
8.6
Infleqtion Superstaq
2.5
8.2
QuTech-Delft Quantum Inspire
0.8
9.0
Quandela Cloud
1.5
8.0
Strangeworks Quantum Computing Platform
1.5
7.6
18b) Cloud services: year comparison
Total answers: 852 (2025) – 722 (2024) – 629 (2023) – 485 (2022)
Compare with 2024
Compare with 2023
Compare with 2022
yearsData2024_18b = [
{ short_label : "IBM Quantum Platform" , value : 69.3 },
{ short_label : "Classiq" , value : 0 },
{ short_label : "Amazon Braket" , value : 20 },
{ short_label : "Microsoft Azure Quantum" , value : 10 },
{ short_label : "qBraid" , value : 14.9 },
{ short_label : "IonQ Quantum Cloud" , value : 8.4 },
{ short_label : "Quantinuum Nexus" , value : 6.4 },
{ short_label : "Xanadu Cloud" , value : 18.9 },
{ short_label : "DWave Leap" , value : 10.5 }
];
nToShow = 9
length_18 = data. replies_clean [18 ]. length
dataWith2024_18b = mylist. map ((e, index) => {
if (index < nToShow){
const d = yearsData2024_18b. find ((d) => e. tool == d. short_label )
e["data2024" ] = d. value
}
})
reversed18 = Array . from (
mylist,
(e, i) => mylist[mylist. length - 1 - i]
). filter ((_, originalIndexFromEnd) => {
const originalIndex = mylist. length - 1 - originalIndexFromEnd;
return originalIndex !== 1 ;
});
sliced18 = reversed18. slice (length_18 - nToShow, length_18);
result18 = sliced18;
years_chart (
result18,
{
x : (d) => d. val25 ,
x2 : (d) => d. data2024 ,
y : (d) => d. tool ,
width : width,
questionN : 18 ,
max : 80 ,
nAnswers : [data. n_replies [18 ]. all [0 ], "485" ],
compareWith : "2024" ,
shownAnswers : false ,
}
)
yearsData2023_18b = [
{ short_label : "IBM Quantum Platform" , value : 70.4 },
{ short_label : "Classiq" , value : 0 },
{ short_label : "Amazon Braket" , value : 19.1 },
{ short_label : "Microsoft Azure Quantum" , value : 12.3 },
{ short_label : "qBraid" , value : 9.2 },
{ short_label : "IonQ Quantum Cloud" , value : 6.6 },
{ short_label : "Quantinuum Nexus" , value : 17.9 },
{ short_label : "Xanadu Cloud" , value : 16.8 },
{ short_label : "DWave Leap" , value : 7.9 }
];
dataWith2023_18b = mylist. map ((e, index) => {
if (index < nToShow){
const d = yearsData2023_18b. find ((d) => e. tool == d. short_label )
e["data2023" ] = d. value
}
})
years_chart (
result18,
{
x : (d) => d. val25 ,
x2 : (d) => d. data2023 ,
y : (d) => d. tool ,
width : width,
questionN : 18 ,
max : 80 ,
nAnswers : [data. n_replies [18 ]. all [0 ], "485" ],
compareWith : "2023" ,
shownAnswers : false ,
}
)
yearsData2022_18b = [
{ short_label : "IBM Quantum Platform" , value : 80 },
{ short_label : "Classiq" , value : 0 },
{ short_label : "Amazon Braket" , value : 21 },
{ short_label : "Microsoft Azure Quantum" , value : 15 },
{ short_label : "qBraid" , value : 9 },
{ short_label : "IonQ Quantum Cloud" , value : 8 },
{ short_label : "Quantinuum Nexus" , value : 8 },
{ short_label : "Xanadu Cloud" , value : 16 },
{ short_label : "DWave Leap" , value : 12 }
];
dataWith2022_18b = mylist. map ((e, index) => {
if (index < nToShow){
const d = yearsData2022_18b. find ((d) => e. tool == d. short_label )
e["data2022" ] = d. value
}
})
years_chart (
result18,
{
x : (d) => d. val25 ,
x2 : (d) => d. data2022 ,
y : (d) => d. tool ,
width : width,
questionN : 18 ,
max : 80 ,
nAnswers : [data. n_replies [18 ]. all [0 ], "485" ],
compareWith : "2022" ,
shownAnswers : false ,
}
)
Software for applications and tools
Software for applications and tools refers to software for domain specific (such as machine learning or finance) or task specific (such as a quantum circuit debugger)
20) Use of software for hardware design and low-level device control
Do you use software for hardware design or low-level device control?
h_barchart (
data. replies_clean [19 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [19 ]. all [0 ],
data. n_replies [19 ]. researcher [0 ],
data. n_replies [19 ]. software_developer [0 ],
data. n_replies [19 ]. student [0 ],
data. n_replies [19 ]. other_role [0 ],
data. n_replies [19 ]. academic_institution [0 ],
data. n_replies [19 ]. enterprise_organization [0 ],
data. n_replies [19 ]. startup [0 ],
data. n_replies [19 ]. other_affiliation [0 ]
],
width : width,
questionN : 20
}
)
21) Software list for hardware design and low-level device control
If you use software for hardware design and low-level device control, what software do you use?
h_barchart (
data. replies_clean [20 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [20 ]. all [0 ],
data. n_replies [20 ]. researcher [0 ],
data. n_replies [20 ]. software_developer [0 ],
data. n_replies [20 ]. student [0 ],
data. n_replies [20 ]. other_role [0 ],
data. n_replies [20 ]. academic_institution [0 ],
data. n_replies [20 ]. enterprise_organization [0 ],
data. n_replies [20 ]. startup [0 ],
data. n_replies [20 ]. other_affiliation [0 ]
],
width : width,
questionN : 21
}
)
22) Use of software for error correction
Do you use software for quantum error correction?
h_barchart (
data. replies_clean [21 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [21 ]. all [0 ],
data. n_replies [21 ]. researcher [0 ],
data. n_replies [21 ]. software_developer [0 ],
data. n_replies [21 ]. student [0 ],
data. n_replies [21 ]. other_role [0 ],
data. n_replies [21 ]. academic_institution [0 ],
data. n_replies [21 ]. enterprise_organization [0 ],
data. n_replies [21 ]. startup [0 ],
data. n_replies [21 ]. other_affiliation [0 ]
],
width : width,
questionN : 22
}
)
23) Software list for quantum error correction
If you use software for Quantum Error Correction, what software do you use?
h_barchart (
data. replies_clean [22 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [22 ]. all [0 ],
data. n_replies [22 ]. researcher [0 ],
data. n_replies [22 ]. software_developer [0 ],
data. n_replies [22 ]. student [0 ],
data. n_replies [22 ]. other_role [0 ],
data. n_replies [22 ]. academic_institution [0 ],
data. n_replies [22 ]. enterprise_organization [0 ],
data. n_replies [22 ]. startup [0 ],
data. n_replies [22 ]. other_affiliation [0 ]
],
width : width,
questionN : 23
}
)
24) Main reasons for not using QEC technologies that respondents would like to use but are not currently using
For QEC technologies that you would like to use but are not currently using, what are the main reasons for not currently using them?
h_barchart (
data. replies_clean [23 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [23 ]. all [0 ],
data. n_replies [23 ]. researcher [0 ],
data. n_replies [23 ]. software_developer [0 ],
data. n_replies [23 ]. student [0 ],
data. n_replies [23 ]. other_role [0 ],
data. n_replies [23 ]. academic_institution [0 ],
data. n_replies [23 ]. enterprise_organization [0 ],
data. n_replies [23 ]. startup [0 ],
data. n_replies [23 ]. other_affiliation [0 ]
],
width : width,
questionN : 24
}
)
26) Software list for high-performance computing
If you use software for HPC, what software do you use?
h_barchart (
data. replies_clean [25 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [25 ]. all [0 ],
data. n_replies [25 ]. researcher [0 ],
data. n_replies [25 ]. software_developer [0 ],
data. n_replies [25 ]. student [0 ],
data. n_replies [25 ]. other_role [0 ],
data. n_replies [25 ]. academic_institution [0 ],
data. n_replies [25 ]. enterprise_organization [0 ],
data. n_replies [25 ]. startup [0 ],
data. n_replies [25 ]. other_affiliation [0 ]
],
width : width,
questionN : 26
}
)
User experience
27) Ranking of most important factors in choosing a Cloud Service
When choosing Cloud Services, please rank which of the following factors is most important to you. Respondents were asked to drag and drop all answers into a ranked list.
h_barchart (
data. replies_clean [26 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [26 ]. all [0 ],
data. n_replies [26 ]. researcher [0 ],
data. n_replies [26 ]. software_developer [0 ],
data. n_replies [26 ]. student [0 ],
data. n_replies [26 ]. other_role [0 ],
data. n_replies [26 ]. academic_institution [0 ],
data. n_replies [26 ]. enterprise_organization [0 ],
data. n_replies [26 ]. startup [0 ],
data. n_replies [26 ]. other_affiliation [0 ]
],
width : width,
questionN : 27 ,
symbol : '' ,
legendForRating : true ,
}
)
30) Main reasons for not using the technologies that respondents would like to use but are not currently using
For the technologies that you would like to use but are not currently using, what are the main reasons for not currently using them?
Total answers: 698 (2025) – 569 (2024) – 425 (2023) – 508 (2022)
Compare with 2024
Compare with 2023
Compare with 2022
yearsData2024_30 = [
{
"short_label" : "Poorly documented" ,
"value" : 50.8
},
{
"short_label" : "Price" ,
"value" : 47.5
},
{
"short_label" : "Incompatible with current stack" ,
"value" : 35.3
},
{
"short_label" : "Tool does not exist" ,
"value" : 33.7
},
{
"short_label" : "Others" ,
"value" : 9.7
}
];
dataWith2024_30 = data. replies_clean [29 ]. slice (0 , data. replies_clean [29 ]. length ). map ((e, index) => {
const d = yearsData2024_30. find ((d) => d. short_label == e. short_label );
e['data2024' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [29 ]. slice (0 , data. replies_clean [29 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2024 ,
y : (d) => d. short_label ,
width : width,
questionN : 30 ,
max : 52 ,
nAnswers : [data. n_replies [29 ]. all [0 ], '569' ],
compareWith : '2024' ,
shownAnswers : false
}
)
yearsData2023_30 = [
{
"short_label" : "Poorly documented" ,
"value" : 49.4
},
{
"short_label" : "Price" ,
"value" : 48.7
},
{
"short_label" : "Incompatible with current stack" ,
"value" : 32.2
},
{
"short_label" : "Tool does not exist" ,
"value" : 30.6
},
{
"short_label" : "Others" ,
"value" : 13.2
}
];
dataWith2023_30 = data. replies_clean [29 ]. slice (0 , data. replies_clean [29 ]. length ). map ((e, index) => {
const d = yearsData2023_30. find ((d) => d. short_label == e. short_label );
e['data2023' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [29 ]. slice (0 , data. replies_clean [29 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2023 ,
y : (d) => d. short_label ,
width : width,
questionN : 30 ,
max : 52 ,
nAnswers : [data. n_replies [29 ]. all [0 ], '425' ],
compareWith : '2023' ,
shownAnswers : false
}
)
yearsData2022_30 = [
{
"short_label" : "Poorly documented" ,
"value" : 42
},
{
"short_label" : "Price" ,
"value" : 44
},
{
"short_label" : "Incompatible with current stack" ,
"value" : 29
},
{
"short_label" : "Tool does not exist" ,
"value" : 38
},
{
"short_label" : "Others" ,
"value" : 17
}
];
dataWith2022_30 = data. replies_clean [29 ]. slice (0 , data. replies_clean [29 ]. length ). map ((e, index) => {
const d = yearsData2022_30. find ((d) => d. short_label == e. short_label );
e['data2022' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [29 ]. slice (0 , data. replies_clean [29 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2022 ,
y : (d) => d. short_label ,
width : width,
questionN : 30 ,
max : 52 ,
nAnswers : [data. n_replies [29 ]. all [0 ], '508' ],
compareWith : '2022' ,
shownAnswers : false
}
)
Open Source Software (OSS) Development & Research
31) Code contributions to quantum OSS projects (can be collaborative or personal projects)
Do you contribute code to quantum OSS projects (can be collaborative or personal projects)?
h_barchart (
data. replies_clean [30 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [30 ]. all [0 ],
data. n_replies [30 ]. researcher [0 ],
data. n_replies [30 ]. software_developer [0 ],
data. n_replies [30 ]. student [0 ],
data. n_replies [30 ]. other_role [0 ],
data. n_replies [30 ]. academic_institution [0 ],
data. n_replies [30 ]. enterprise_organization [0 ],
data. n_replies [30 ]. startup [0 ],
data. n_replies [30 ]. other_affiliation [0 ]
],
width : width,
questionN : 31
}
)
32) Contributions to quantum OSS as part of scientific research in the quantum field
Are your contributions to quantum OSS part of your scientific research in the quantum field?
h_barchart (
data. replies_clean [31 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [31 ]. all [0 ],
data. n_replies [31 ]. researcher [0 ],
data. n_replies [31 ]. software_developer [0 ],
data. n_replies [31 ]. student [0 ],
data. n_replies [31 ]. other_role [0 ],
data. n_replies [31 ]. academic_institution [0 ],
data. n_replies [31 ]. enterprise_organization [0 ],
data. n_replies [31 ]. startup [0 ],
data. n_replies [31 ]. other_affiliation [0 ]
],
width : width,
questionN : 32
}
)
34) Area of quantum computing believed to be the most promising for future research
Please select the area of quantum computing you believe to be the most promising for future research. Please check all that apply.
Total answers: 807 (2025) – 807 (2024) – 499 (2023)
Compare with 2024
Compare with 2023
yearsData2024_34 = [
{
"short_label" : "Algorithm development" ,
"value" : 56.3
},
{
"short_label" : "Error correction" ,
"value" : 51.6
},
{
"short_label" : "Application development" ,
"value" : 45.5
},
{
"short_label" : "Quantum simulation/Physics" ,
"value" : 40.7
},
{
"short_label" : "Hardware development" ,
"value" : 33.7
},
{
"short_label" : "Circuit development & optimization" ,
"value" : 34.2
},
{
"short_label" : "Error mitigation" ,
"value" : 28.1
},
{
"short_label" : "Quantum Information Theory" ,
"value" : 25.8
},
{
"short_label" : "Software Engineering" ,
"value" : 26.6
},
{
"short_label" : "Fundamental Physics" ,
"value" : 17.7
},
{
"short_label" : "Qubit characterization" ,
"value" : 13.3
},
{
"short_label" : "Others" ,
"value" : 2.1
},
{
"short_label" : "None of the above" ,
"value" : 0
}
];
dataWith2024_34 = data. replies_clean [33 ]. slice (0 , data. replies_clean [33 ]. length ). map ((e, index) => {
const d = yearsData2024_34. find ((d) => d. short_label == e. short_label );
e['data2024' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [33 ]. slice (0 , data. replies_clean [33 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2024 ,
y : (d) => d. short_label ,
width : width,
questionN : 34 ,
max : 60 ,
nAnswers : [data. n_replies [33 ]. all [0 ], '807' ],
compareWith : '2024' ,
shownAnswers : false
}
)
yearsData2023_34 = [
{
"short_label" : "Algorithm development" ,
"value" : 55.9
},
{
"short_label" : "Error correction" ,
"value" : 49.5
},
{
"short_label" : "Application development" ,
"value" : 39.9
},
{
"short_label" : "Quantum simulation/Physics" ,
"value" : 39.1
},
{
"short_label" : "Hardware development" ,
"value" : 37.3
},
{
"short_label" : "Circuit development & optimization" ,
"value" : 33.1
},
{
"short_label" : "Error mitigation" ,
"value" : 31.1
},
{
"short_label" : "Quantum Information Theory" ,
"value" : 26.5
},
{
"short_label" : "Software Engineering" ,
"value" : 25.7
},
{
"short_label" : "Fundamental Physics" ,
"value" : 16.2
},
{
"short_label" : "Qubit characterization" ,
"value" : 14.4
},
{
"short_label" : "Others" ,
"value" : 1.6
},
{
"short_label" : "None of the above" ,
"value" : 0
}
];
dataWith2023_34 = data. replies_clean [33 ]. slice (0 , data. replies_clean [33 ]. length ). map ((e, index) => {
const d = yearsData2023_34. find ((d) => d. short_label == e. short_label );
e['data2023' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [33 ]. slice (0 , data. replies_clean [33 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2023 ,
y : (d) => d. short_label ,
width : width,
questionN : 34 ,
max : 60 ,
nAnswers : [data. n_replies [33 ]. all [0 ], '499' ],
compareWith : '2023' ,
shownAnswers : false
}
)
35) Co-authored a research paper based on work with open-source software
Have you co-authored a research paper based on work with open-source software?
h_barchart (
data. replies_clean [34 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [34 ]. all [0 ],
data. n_replies [34 ]. researcher [0 ],
data. n_replies [34 ]. software_developer [0 ],
data. n_replies [34 ]. student [0 ],
data. n_replies [34 ]. other_role [0 ],
data. n_replies [34 ]. academic_institution [0 ],
data. n_replies [34 ]. enterprise_organization [0 ],
data. n_replies [34 ]. startup [0 ],
data. n_replies [34 ]. other_affiliation [0 ]
],
width : width,
questionN : 35
}
)
36) Programming languages the respondents use in developing quantum software
Which programming languages do you use in developing quantum software? Please select all that apply.
h_barchart (
data. replies_clean [36 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [36 ]. all [0 ],
data. n_replies [36 ]. researcher [0 ],
data. n_replies [36 ]. software_developer [0 ],
data. n_replies [36 ]. student [0 ],
data. n_replies [36 ]. other_role [0 ],
data. n_replies [36 ]. academic_institution [0 ],
data. n_replies [36 ]. enterprise_organization [0 ],
data. n_replies [36 ]. startup [0 ],
data. n_replies [36 ]. other_affiliation [0 ]
],
width : width,
questionN : 37
}
)
36b) Programming languages the respondent use in developing quantum software, comparison by year
Total answers: 828 (2025) – 615 (2024) – 513 (2023) – 542 (2022)
Compare with 2024
Compare with 2023
Compare with 2022
yearsData2024_37 = [
{
"short_label" : "Python" ,
"value" : 94.8
},
{
"short_label" : "C/C++" ,
"value" : 26.5
},
{
"short_label" : "Julia" ,
"value" : 11.5
},
{
"short_label" : "MATLAB" ,
"value" : 10.9
},
{
"short_label" : "Rust" ,
"value" : 13.2
},
{
"short_label" : "Mathematica" ,
"value" : 6.8
},
{
"short_label" : "Q#" ,
"value" : 6.8
},
{
"short_label" : "Javascript" ,
"value" : 5.7
}
];
dataWith2024_37 = data. replies_clean [36 ]. slice (4 , data. replies_clean [36 ]. length ). map ((e, index) => {
const d = yearsData2024_37. find ((d) => d. short_label == e. short_label );
e['data2024' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [36 ]. slice (4 , data. replies_clean [36 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2024 ,
y : (d) => d. short_label ,
width : width,
questionN : 37 ,
max : 97 ,
nAnswers : [data. n_replies [36 ]. all [0 ], '615' ],
compareWith : '2024' ,
shownAnswers : false
}
)
yearsData2023_37 = [
{
"short_label" : "Python" ,
"value" : 94.5
},
{
"short_label" : "C/C++" ,
"value" : 24.2
},
{
"short_label" : "Julia" ,
"value" : 14.6
},
{
"short_label" : "MATLAB" ,
"value" : 9.9
},
{
"short_label" : "Rust" ,
"value" : 9.2
},
{
"short_label" : "Mathematica" ,
"value" : 8.6
},
{
"short_label" : "Q#" ,
"value" : 6.6
},
{
"short_label" : "Javascript" ,
"value" : 6.6
}
];
dataWith2023_37 = data. replies_clean [36 ]. slice (4 , data. replies_clean [36 ]. length ). map ((e, index) => {
const d = yearsData2023_37. find ((d) => d. short_label == e. short_label );
e['data2023' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [36 ]. slice (4 , data. replies_clean [36 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2023 ,
y : (d) => d. short_label ,
width : width,
questionN : 37 ,
max : 97 ,
nAnswers : [data. n_replies [36 ]. all [0 ], '513' ],
compareWith : '2023' ,
shownAnswers : false
}
)
yearsData2022_37 = [
{
"short_label" : "Python" ,
"value" : 94
},
{
"short_label" : "C/C++" ,
"value" : 26
},
{
"short_label" : "Julia" ,
"value" : 10
},
{
"short_label" : "MATLAB" ,
"value" : 10
},
{
"short_label" : "Rust" ,
"value" : 7
},
{
"short_label" : "Mathematica" ,
"value" : 10
},
{
"short_label" : "Q#" ,
"value" : 5
},
{
"short_label" : "Javascript" ,
"value" : 6
}
];
dataWith2022_37 = data. replies_clean [36 ]. slice (4 , data. replies_clean [36 ]. length ). map ((e, index) => {
const d = yearsData2022_37. find ((d) => d. short_label == e. short_label );
e['data2022' ] = d ? d. value : 0 ;
})
years_chart (
data. replies_clean [36 ]. slice (4 , data. replies_clean [36 ]. length ),
{
x : (d) => d. all_ratio ,
x2 : (d) => d. data2022 ,
y : (d) => d. short_label ,
width : width,
questionN : 37 ,
max : 97 ,
nAnswers : [data. n_replies [36 ]. all [0 ], '542' ],
compareWith : '2022' ,
shownAnswers : false
}
)
37) Programming languages the respondents would like to learn, or consider to be the most promising for future use
Which programming languages would you like to learn, or consider to be the most promising for future use? Please select all that apply.
h_barchart (
data. replies_clean [37 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [37 ]. all [0 ],
data. n_replies [37 ]. researcher [0 ],
data. n_replies [37 ]. software_developer [0 ],
data. n_replies [37 ]. student [0 ],
data. n_replies [37 ]. other_role [0 ],
data. n_replies [37 ]. academic_institution [0 ],
data. n_replies [37 ]. enterprise_organization [0 ],
data. n_replies [37 ]. startup [0 ],
data. n_replies [37 ]. other_affiliation [0 ]
],
width : width,
questionN : 38
}
)
38) Workflow used in developing quantum software
Which of the below workflows do you use in developing quantum software? Please select all that apply.
h_barchart (
data. replies_clean [38 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [38 ]. all [0 ],
data. n_replies [38 ]. researcher [0 ],
data. n_replies [38 ]. software_developer [0 ],
data. n_replies [38 ]. student [0 ],
data. n_replies [38 ]. other_role [0 ],
data. n_replies [38 ]. academic_institution [0 ],
data. n_replies [38 ]. enterprise_organization [0 ],
data. n_replies [38 ]. startup [0 ],
data. n_replies [38 ]. other_affiliation [0 ]
],
width : width,
questionN : 39
}
)
40) Use of resource estimation for software development and research
Do you use resource estimation for software development and research?
h_barchart (
data. replies_clean [40 ],
{ x : (d) => d. all_ratio ,
xFilter1_1 : (d) => d. researcher_ratio ,
xFilter1_2 : (d) => d. software_developer_ratio ,
xFilter1_3 : (d) => d. student_ratio ,
xFilter1_4 : (d) => d. other_role_ratio ,
xFilter2_1 : (d) => d. academic_institution_ratio ,
xFilter2_2 : (d) => d. enterprise_organization_ratio ,
xFilter2_3 : (d) => d. startup_ratio ,
xFilter2_4 : (d) => d. other_affiliation_ratio ,
y : (d) => d. short_label ,
filterLabels1 : ['All' , 'Researcher' , 'Software Developer' , 'Student' , 'Other Role' ],
filterLabels2 : ['Academic Institution' , 'Enterprise Organization' , 'Startup' , 'Other Organization Type' ],
filters : true ,
nAnswers : [
data. n_replies [40 ]. all [0 ],
data. n_replies [40 ]. researcher [0 ],
data. n_replies [40 ]. software_developer [0 ],
data. n_replies [40 ]. student [0 ],
data. n_replies [40 ]. other_role [0 ],
data. n_replies [40 ]. academic_institution [0 ],
data. n_replies [40 ]. enterprise_organization [0 ],
data. n_replies [40 ]. startup [0 ],
data. n_replies [40 ]. other_affiliation [0 ]
],
width : width,
questionN : 41
}
)
41) Role of resource estimation
If yes, what do you use resource estimation for?
This was an open-ended question. These are the main categories of responses given by users.
Resource Estimation & Planning
Focus on estimating qubits, gates, runtime, or planning QPU/cloud usage [33]
Budgeting, Pricing & Cost Estimation
Estimating costs for cloud compute or QPU usage [10]
Fault Tolerance & Error Mitigation
Focus on fault-tolerant QC, error correction and mitigation [9]
Algorithm & Circuit Optimization
Optimizing circuits, gates, depth, or algorithm efficiency [19]
Algorithm/Application Research & Analysis
Using tools for research, scaling and performance evaluation [19]
Custom/Tool Development
Use of custom tools for estimation, deployment, or simulation [7]
Circuit/Algorithm Metrics & Scaling Analysis
Focus on scaling properties, circuit complexity metrics, and theoretical analysis [7]
Methodology
The quantum OSS projects listed in the software survey have been chosen among those with >50 stars on Github/GitLab included in the awesome-quantum-software list and other lists, excluding software focusing on tutorials, cryptography, experiments, and with commits within the last 12 months. The software projects and platforms have been divided in three categories: cloud services; software for full-stack development, compilers and simulators; and application tools. Software and tools that are represented for the first time this year are not shown in the year-to-year comparison questions.
A draft of the survey was circulated among the Unitary Foundation advisory board, executive board, program members, and partners for feedback. The survey was open from Sept. 2 – Oct. 5, 2025. The data is stored at github.com/unitaryfoundation/qoss-survey .
Unitary Foundation circulated the survey on its social media platforms (Discord, X, LinkedIn, UF blog) and contacting major blogs (QC Report, Qiskit Slack channels, PennyLane blog, etc.), newsletters (UF mailing list, QuTiP mailing list, academic networks, etc.), UF members, supporters and partners.
This is all possible thanks to UF’s amazing members and supporters. Thank you to all that have participated.